Case Study #2
Diabetes Mellitus
There has been a 350-fold increase of type 1 diabetes in the past 50 years in Europe and North America. This autoimmune disease usually strikes children and teens. Thirty-five percent of individuals with type 1 diabetes will die of heart disease by the age of 55. Eighty percent will develop retinopathy within 15 years of diagnosis leading to subsequent blindness. Twenty to forty percent will develop kidney disease before the age of 50. In Case #4 we’ll experience symptoms, diagnoses, and treatment of diabetes with six-year-old Ali.
Ali's mother knew there was something not quite right with her daughter lately. She just couldn't put her finger on it. She was trying to explain this over the phone to the nurse at the Pediatrician's office. Ali had been so tired since starting first grade. She had been wetting the bed every night, something that had not occurred since she was two. "I've been trying to cut back her liquids at night," explained Ali's mother, "but she seems to be so thirsty that I finally give in and give her a drink at bedtime. She literally guzzles that down and wants more. I'm not sure what to do." The nurse explained that the next available exam opening was in two weeks. "Could they come then?" Ali's mother uneasily agreed to the date and hung up the phone.
The following day, Ali's family was planning a trip to the local amusement park. "Ali, are you still eating breakfast? Let's go!" "But I'm still hungry," Ali shouted back. "Mom, that's her third bowl of Cheerios and she's gulped about half of that gallon of milk!" Her big brother Mike was getting impatient as well. "It's amazing that someone that skinny can eat that much. Talk about a hollow leg." Ali's mother looked back at her. She really didn't have an ounce of fat on her body. "Oh, to be young," she mused. "I wish I could get away with eating that much!"
At the amusement park, Ali made a beeline for the nearest bathroom after every ride. "She is such a pain!," exclaimed Mike. "I bet she's just doing this to annoy me. We're not going to get to ride on anything." Ali's mother didn't answer. She was genuinely worried. She had accompanied Ali each time to the restroom and she knew Ali was not just trying to be annoying. How could anyone have to go that much?
The next day was Sunday. Ali’s mom had just woken up from a well-deserved nap. She had been up three times the night before changing Ali’s sheets. She found her daughter lying on the couch watching TV. "Why don't you go outside and play. It's a nice day." "I can't breath very good, and I feel sick to my stomach," replied Ali. Ali's mother looked at her in alarm. Her breathing was very rapid and labored. She looked pale, and so thin. She called and talked with an emergency room nurse at the local hospital. After asking a few questions, the nurse recommended bringing Ali in to be examined.
In the emergency room, a urine sample was collected for urinalysis and blood was drawn for a stat Chemistry Screen, and CBC. Respiratory therapy drew additional blood from an artery for arterial blood gases.

Blood pressure was 145/70 mmHg, heart rate was 120 beats per minute, respiration rate was 36 per minute, and oral temperature was 98.4°F. Chest sounds were clear and abdomen was soft with no organomegaly (enlargement of visceral organs).
Case Questions

1. List 3 functions of the kidneys as discussed in the "urinalysis" site.
2. What are some substances detected by a urinalysis?
3. What 2 methods are used when performing a urinalysis?
4. What is a chemistry screen?
5. What blood chemistry test is a diagnostic indicator for diabetes?
6. Name the electrolytes. What disease states may cause each to be abnormal?
7. What 2 chemical tests are indicative of kidney function?
8. Which health professional would perform urinalysis and chemical tests on the blood?
9. What do arterial blood gasses (ABG's) test for?
10. Why would a physician order an ABG?
11. What type of blood is used for ABG's? Why?
12. Which health professional would perform arterial blood gas measurements?
13. What do the systolic and diastolic blood pressure readings reflect?
14. Untreated high blood pressure may lead to what disease states?
Instructor's Notes: Three key diagnostic indicators of an acid-base imbalance are the pH, PCO2, and HCO3. The pH tells the physician if the blood is too acidic, too alkaline, or normal. A pH below the normal range indicates the patient's blood is acidic. This can be a very serious condition leading to coma and death. HCO3 is an indication of how much "base" is present in the blood. HCO3 is regulated by the kidneys. The low bicarbonate value (HCO3) indicates the acidosis is caused by a metabolic problem rather than respiratory. The pCO2 is an indicator of how much "acid" is in the patient's blood. pCO2 is regulated by the respiratory system. In this case, the respiratory system is trying to compensate by rapid breathing (hyperventilation) to get rid of acidic CO2. The pCO2 values are low because of this compensatory mechanism. Acid-Base imbalances are complex and will not be dealt with in any detail here. It is important for the student to understand that the patient is hyperventilating to compensate for an acid-base imbalance.
Other Lab Results

Microbiology Results: Urine Culture
Negative for Cells or Bacteria
Instructor's Notes: Laboratory results show an elevated WBC, probably due to stress on the body from illness. The metabolic acidosis is causing an electrolyte imbalance which affects the sodium (Na), potassium (K), and chloride (Cl). The electrolyte imbalance is very dangerous as it may induce fibrillation of the heart, coma, and death. Bun and Creatinine are kidney function tests and indicate stress is being placed on the kidneys. Blood glucose levels are extremely elevated. The kidneys cannot reabsorb all of the glucose causing the excess glucose to spill into the urine. This results in abnormally high levels of glucose in the urine. When the body cannot get adequate fuel from carbohydrate breakdown, it breaks down fats and protein. Byproducts of fat and protein breakdown are organic acids called ketone bodies. When ketone bodies accumulate in the blood, the pH of the blood drops causing a condition called ketoacidosis. In this case, the metabolic acidosis, reflected in the blood gas results, is caused by the accumulation of ketone bodies.
The laboratory results were consistent with Diabetic ketoacidosis (DKA) as a result of untreated insulin dependent diabetes mellitus (IDDM). Ali was admitted to the hospital where intravenous fluids were started to alleviate dehydration. An insulin I.V. drip was also started.
Case Questions

15. Why do untreated type I diabetics go into a state of ketoacidosis?

16. What are common symptoms of DKA?

17. What is the most common cause of diabetes in children?

18. How does insulin affect glucose in the body?

19. What are the classic symptoms of diabetes?

20. What is the cause of each symptom?

21. How is diabetes diagnosed?
The following morning Ali and her parents met with a diabetes nurse educator. She explained that insulin is like a key that unlocks the door to the cells in the body so that glucose can pass through. Ali’s body had destroyed the beta cells in her pancreas that make insulin, so her body had not been getting any nutrients. High glucose levels in the blood and the kidneys caused excessive fluid loss causing Ali’s severe dehydration. From now on, Ali would have to give insulin by shots. Ali practiced giving shots to oranges, and even practiced on mom and dad. She also practiced testing her blood sugar on a glucometer.
Case Questions

22. In what ways is a nurse educator different than a traditional registered nurse?
Ali’s next visitor was the endocrinologist. He explained that they would be testing her blood sugar every two hours for the next day. This would help him decide how much insulin she would need when she left the hospital. Ali would be taking two insulin shots a day, before breakfast and dinner.
Case Question

23. What type of patient would an endocrinologist treat?
A meeting with the dietician was next. Insulin is given based upon the amount of food that will be eaten throughout the day. Ali would need to stick to a special diet to keep her blood sugars in control. Eating too much would elevate her blood sugars (hyperglycemia) and not eating enough could lower her blood sugars (hypoglycemia) and cause her to have an insulin reaction. Ali and her parents set up a meal plan with the dietician based upon the amount of food Ali would normally eat in a day.
Case Questions

24. How can a Type I diabetic become hypoglycemic?
25. List symptoms that may accompany hypoglycemia.
The last meeting of the day was with a medical social worker. She gave Ali tips on how to fit in at school with her diabetes, how to educate her teacher, and how to deal with the upcoming Halloween, Thanksgiving, and Christmas holidays, where there is a lot of extra food and sweets.

Three days after being admitted to the hospital Ali went home with a brand new lifestyle. She was soon testing her own blood and even giving her own shots. She regained her energy and soon began to put on some much needed weight. When her friend's older brother expressed amazement the she would give herself a shot she responded, "It's not that hard. And besides, it makes me feel so much better it's worth it!"
Insulin-Dependent Diabetes Mellitus (IDDM), also categorized as Type I diabetes, is an autoimmune disease of children in which the body's immune system attacks the insulin producing beta cells on the pancreas. It is theorized that this immune response may be triggered during a viral infection in those with a genetic predisposition to the disease.

The symptoms of undiagnosed diabetes include excessive hunger and thirst, weight loss, frequent urination, and fatigue.

The diagnoses of diabetes in this case was made by the endocrinologist based upon elevated levels of glucose in the blood and urine. Ali was not seen until her disease had progressed to diabetic ketoacidosis. DKA was diagnosed based on the arterial blood gas results showing a pH of less than 7.3, large amounts of ketones in the urine, elevated potassium, and physical symptoms such as rapid heart rate and rapid breathing.

The goal of treatment of Type I diabetes is to regulate the patient's blood glucose so that it does not rise too high (hyperglycemia) or drop too low (hypoglycemia). This is done by insulin injections, a controlled diet, and exercise. Insulin pumps function much more like a normal pancreas and are being used increasingly more. Because of the complexity of operating insulin pumps, they are generally not recommended until the teenage years.

There is no cure for Type I Diabetes Mellitus, except for a pancreas transplant. Because of the highly volatile nature of the pancreas, a transplant is generally done as a last resort. Studies have now proven that diabetics who remain in tight control may prevent or slow the start of diabetic complications.

There is no known prevention of Type I diabetes. Animal research and small studies in people have indicated that type 1 diabetes can be delayed in those at high risk for the disease by regular, small doses of insulin. This is currently under study.

Healthcare workers depend on each other in treating a diabetic patient. Laboratory personnel report critical laboratory values including blood chemistry, CBC, and urinalysis results. The respiratory therapist monitors arterial blood gasses in the diabetic patient in DKA. Diabetic educator nurses have a responsibility to not only show the patient how to give injections, but to educate the diabetic about all aspects of their disease. It should be noted that in many cases staff nurses may work to educate patients about diabetes. The diabetics overall control relies heavily on their diet. The dietician plays a key role in developing a meal plan and educating the patient about the importance of diet. Social changes and adjustments by the patient and family are facilitated by the medical social worker. The endocrinologist has the ultimate responsibility for the diabetics health. He prescribes insulin based on the patient's diet and lifestyle. He must be ready to make key decisions for the day to day health of the diabetic as well as for life threatening complications.
Answers to Case Questions

1. Remove waste products from the body; remove drugs from the body; balance the body's fluids; release hormones that regulate blood pressure; produce an active form of vitamin D that promotes strong, healthy bones; control the production of red blood cells.

2. Cells including RBC's and WBC's; Bacteria; Chemicals including glucose; pH; concentration.

3. Urine dipstick; Microscopic exam.

4. A blood test that measures chemicals in the blood.

5. Blood glucose.

6. Sodium—Dehydration, heart or kidney abnormalities; Potassium—Vomiting or diarrhea. Increased in kidney failure; Chloride—Abnormal changes occur with changes in sodium level; Bicarbonate—Changes with problems in acid/base balance.

8. Clinical Laboratory Scientist.

9. pH (acidity), oxygen content, and carbon dioxide content of the blood.

10. A physician orders an ABG to detect changes in the patient's acid-base balance in the blood. This balance is critical. The lungs and the kidneys regulate acid-base balance. An ABG can therefore detect respiratory conditions or disease, kidney function (metabolic), and is also used to monitor oxygen therapy.

11. Arterial. Arterial blood is oxygenated blood.

12. Respiratory therapist.

13. **Systolic:** Force on blood vessels from the pumping of the heart; **Diastolic:** Lowest pressure on the blood vessels when the heart is relaxed.

15. Type I diabetics do not produce insulin. Insulin is necessary to carry glucose into the cells where it is utilized. When the cells do not receive energy from carbohydrate breakdown, the body begins to break down fat as a secondary energy source. Byproducts of fat breakdown are ketone bodies which lead to the blood being more acidic than the tissue.

16. Symptoms include frequent urination and thirst, weight loss, increased appetite, fatigue, nausea, vomiting, muscle stiffness, mental stupor, hyperventilation, fruity breath.

17. Destruction of the insulin producing beta cells of the pancreas by the body's own immune system.

18. Insulin is released as the body's blood glucose (sugar) begins to rise. The insulin facilitates the transport of the blood glucose into the cells.

19. Excessive thirst, frequent urination, weight loss.

20. The body's cells are starving because they cannot get the glucose they need for energy. Glucose levels rise in the bloodstream because it is not transported into the cells. The kidneys flush extra water out, trying to get rid of the excess glucose. This causes dehydration, excessive urination, and excessive thirst. Because the cells cannot get the energy they need, the body breaks down fat stores for energy and weight loss occurs.

21. Increased glucose levels in the blood and urine. Ketone bodies are present in the urine in cases of diabetes ketoacidosis.

22. A nurse educator specializes in nursing education. Typically a nurse educator has a masters or doctorate degree.

23. An endocrinologist is a specially trained physician who treats patients with diseases that affect hormone-producing glands.

24. Giving too much insulin for the amount of food eaten.

25. Symptoms vary from individual to individual but may include anxiety, sweating, tremor, palpitations, nausea, and pallor headache, mild confusion, and abnormal behavior. Severe hypoglycemia may lead to seizure, unconsciousness, and coma.
Type 1 Diabetes

1. The stomach changes food into glucose.
2. Glucose enters the bloodstream.
3. The pancreas makes little or no insulin.
4. Little or no insulin enters the bloodstream.
5. Glucose builds up in the bloodstream.

Copyright © 2001 WebMD Corporation
Urinalysis (UA)

- Ordered when a doctor suspects that a child has a urinary tract infection or a health problem that can cause an abnormality in the urine

- Functions of the kidneys:
 - remove waste products from the body
 - remove drugs from the body
 - balance the body's fluids
 - release hormones that regulate blood pressure
 - produce an active form of vitamin D that promotes strong, healthy bones
 - control the production of red blood cells

- UA can measure:
 - the number and variety of red and white blood cells
 - the presence of bacteria or other organisms
 - the presence of substances, such as glucose, that usually shouldn't be found in the urine
 - the pH, which shows how acidic or basic the urine is
 - the concentration of the urine
Chemistry Screen (CMP, Chem Panel)

A comprehensive metabolic panel is a group of blood tests that provide an overall picture of the body's chemical balance and metabolism. Metabolism refers to all the physical and chemical processes in the body that use energy.

- Measures:
 - Blood levels of sodium, potassium, calcium, chloride, carbon dioxide, glucose, blood urea nitrogen (BUN), creatinine, protein, albumin, bilirubin, and liver enzymes.

This test will give your doctor information about:
- How the kidneys and liver are working
- Blood sugar, cholesterol, and calcium levels
- Sodium, potassium, and chloride levels (called electrolytes)
- Protein levels

<table>
<thead>
<tr>
<th>Tests</th>
<th>Result</th>
<th>Flag</th>
<th>Units</th>
<th>Reference Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose, Serum</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>65-99</td>
</tr>
<tr>
<td>BUN</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>6-24</td>
</tr>
<tr>
<td>Creatinine, Serum</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>0.76-1.27</td>
</tr>
<tr>
<td>eGFR If NonAfricn Am</td>
<td></td>
<td></td>
<td>mL/min/1.73</td>
<td>>59</td>
</tr>
<tr>
<td>eGFR If Africn Am</td>
<td></td>
<td></td>
<td>mL/min/1.73</td>
<td>>59</td>
</tr>
<tr>
<td>BUN/Creatinine Ratio</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>9-20</td>
</tr>
<tr>
<td>Sodium, Serum</td>
<td></td>
<td></td>
<td>mmol/L</td>
<td>134-144</td>
</tr>
<tr>
<td>Potassium, Serum</td>
<td></td>
<td></td>
<td>mmol/L</td>
<td>3.5-5.2</td>
</tr>
<tr>
<td>Chloride, Serum</td>
<td></td>
<td></td>
<td>mmol/L</td>
<td>97-108</td>
</tr>
<tr>
<td>Carbon Dioxide, Total</td>
<td></td>
<td></td>
<td>mmol/L</td>
<td>20-32</td>
</tr>
<tr>
<td>Calcium, Serum</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>8.7-10.2</td>
</tr>
<tr>
<td>Protein, Total, Serum</td>
<td></td>
<td></td>
<td>g/dL</td>
<td>6.0-8.5</td>
</tr>
<tr>
<td>Albumin, Serum</td>
<td></td>
<td></td>
<td>g/dL</td>
<td>3.5-5.5</td>
</tr>
<tr>
<td>Globulin, Total</td>
<td></td>
<td></td>
<td>g/dL</td>
<td>1.5-4.5</td>
</tr>
<tr>
<td>A/G Ratio</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>1.1-2.5</td>
</tr>
<tr>
<td>Bilirubin, Total</td>
<td></td>
<td></td>
<td>mg/dL</td>
<td>0.0-1.2</td>
</tr>
<tr>
<td>Alkaline Phosphatase, S</td>
<td></td>
<td></td>
<td>IU/L</td>
<td>25-150</td>
</tr>
<tr>
<td>AST (SGOT)</td>
<td></td>
<td></td>
<td>IU/L</td>
<td>0-40</td>
</tr>
<tr>
<td>ALT (SGPT)</td>
<td></td>
<td></td>
<td>IU/L</td>
<td>0-55</td>
</tr>
</tbody>
</table>
An arterial blood gas (ABG) test measures the acidity (pH) and the levels of oxygen and carbon dioxide in the blood from an artery. Used to check how well your lungs are able to move oxygen into the blood and remove carbon dioxide from the blood.

An ABG measures:

- **Partial pressure of oxygen (PaO2).** This measures the pressure of oxygen dissolved in the blood and how well oxygen is able to move from the airspace of the lungs into the blood.

- **Partial pressure of carbon dioxide (PaCO2).** This measures how much carbon dioxide is dissolved in the blood and how well carbon dioxide is able to move out of the body.

- **pH.** The pH measures hydrogen ions (H+) in blood. The pH of blood is usually between 7.35 and 7.45. A pH of less than 7.0 is called acid and a pH greater than 7.0 is called basic (alkaline). So blood is slightly basic.

- **Bicarbonate (HCO3).** Bicarbonate is a chemical (buffer) that keeps the pH of blood from becoming too acidic or too basic.

- **Oxygen content (O2CT) and oxygen saturation (O2Sat) values.** O2 content measures the amount of oxygen in the blood. Oxygen saturation measures how much of the hemoglobin in the red blood cells is carrying oxygen (O2).
Blood Pressure

- Blood pressure is the force of blood against the walls of arteries.
- Recorded as two numbers:
 - Systolic pressure over diastolic pressure: \(\frac{\text{systolic}}{\text{diastolic}} \)
 - Systolic=pressure as the heart beats
 - Diastolic=pressure as the heart relaxes between beats
Diabetic Ketoacidosis (DKA)

- **Diabetic ketoacidosis (DKA)** is a life-threatening blood chemical (electrolyte) imbalance that develops in a person with diabetes when the cells do not get the sugar (glucose) they need for energy. As a result, the body breaks down fat instead of glucose and produces and releases substances called ketones into the bloodstream.

- People with type 1 diabetes and some people with type 2 diabetes are at risk for DKA if they do not take enough insulin, have a severe infection or other illness, or become severely dehydrated.

- Symptoms of diabetic ketoacidosis include:
 - Flushed, hot, dry skin
 - A strong, fruity breath odor (similar to nail polish remover or acetone)
 - Restlessness, drowsiness or difficulty waking up. Young children may lack interest in their normal activities
 - Rapid, deep breathing
 - Loss of appetite, abdominal pain, and vomiting
 - Confusion

- Severe diabetic ketoacidosis can cause difficulty breathing, brain swelling (cerebral edema), coma, or death

- Treatment involves giving insulin and fluids through a vein and closely monitoring and replacing electrolytes.
Acid/Base Balance

- **Respiratory:** When breathing is inadequate carbon dioxide (respiratory acid) accumulates. The extra CO2 molecules combine with water to form carbonic acid which contributes to an acid pH. The treatment, if all else fails, is to lower the PCO2 by breathing for the patient using a ventilator.

- **Metabolic:** When normal metabolism is impaired - acid forms, e.g., poor blood supply stops oxidative metabolism and lactic acid forms. This acid is not respiratory so, by definition, it is "metabolic acid." If severe, the patient may be in shock and require treatment, possibly by neutralizing this excess acid with bicarbonate, possibly by allowing time for excretion/metabolism.